Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Real-space recipes for general topological crystalline states (1810.11013v2)

Published 25 Oct 2018 in cond-mat.str-el

Abstract: Topological crystalline states are short-range entangled states jointly protected by onsite and crystalline symmetries. While the non-interacting limit of these states, e.g., the topological crystalline insulators, have been intensively studied in band theory and have been experimentally discovered, the classification and diagnosis of their strongly interacting counterparts are relatively less well understood. Here we present a unified scheme for constructing all topological crystalline states, bosonic and fermionic, free and interacting, from real-space "building blocks" and "connectors". Building blocks are finite-size pieces of lower dimensional topological states protected by onsite symmetries alone, and connectors are "glue" that complete the open edges shared by two or multiple pieces of building blocks. The resulted assemblies are selected against two physical criteria we call the "no-open-edge condition" and the "bubble equivalence", which, respectively, ensure that each selected assembly is gapped in the bulk and cannot be deformed to a product state. The scheme is then applied to obtaining the full classification of bosonic topological crystalline states protected by several onsite symmetry groups and each of the 17 wallpaper groups in two dimensions and 230 space groups in three dimensions. We claim that our real-space recipes give the complete set of topological crystalline states for bosons and fermions, and prove the boson case analytically using a spectral sequence expansion of group cohomology.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.