Heegaard Floer homology for manifolds with torus boundary: properties and examples
Abstract: This is a companion paper to earlier work of the authors, which interprets the Heegaard Floer homology for a manifold with torus boundary in terms of immersed curves in a punctured torus. We prove a variety of properties of this invariant, paying particular attention to its relation to knot Floer homology, the Thurston norm, and the Turaev torsion. We also give a geometric description of the gradings package from bordered Heegaard Floer homology and establish a symmetry under spin$c$ conjugation; this symmetry gives rise to genus one mutation invariance in Heegaard Floer homology for closed three-manifolds. Finally, we include more speculative discussions on relationships with Seiberg-Witten theory, Khovanov homology, and $HF\pm$. Many examples are included.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.