Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tikhonov regularization with l^0-term complementing a convex penalty: l^1 convergence under sparsity constraints (1810.08775v1)

Published 20 Oct 2018 in math.NA

Abstract: Measuring the error by an l1-norm, we analyze under sparsity assumptions an l0-regularization approach, where the penalty in the Tikhonov functional is complemented by a general stabilizing convex functional. In this context, ill-posed operator equations Ax = y with an injective and bounded linear operator A mapping between l2 and a Banach space Y are regularized. For sparse solutions, error estimates as well as linear and sublinear convergence rates are derived based on a variational inequality approach, where the regularization parameter can be chosen either a priori in an appropriate way or a posteriori by the sequential discrepancy principle. To further illustrate the balance between the l0-term and the complementing convex penalty, the important special case of the l2-norm square penalty is investigated showing explicit dependence between both terms. Finally, some numerical experiments verify and illustrate the sparsity promoting properties of corresponding regularized solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.