Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Renormalized Normalized Maximum Likelihood and Three-Part Code Criteria For Learning Gaussian Networks (1810.08749v2)

Published 20 Oct 2018 in cs.LG and stat.ML

Abstract: Score based learning (SBL) is a promising approach for learning Bayesian networks in the discrete domain. However, when employing SBL in the continuous domain, one is either forced to move the problem to the discrete domain or use metrics such as BIC/AIC, and these approaches are often lacking. Discretization can have an undesired impact on the accuracy of the results, and BIC/AIC can fall short of achieving the desired accuracy. In this paper, we introduce two new scoring metrics for scoring Bayesian networks in the continuous domain: the three-part minimum description length and the renormalized normalized maximum likelihood metric. We rely on the minimum description length principle in formulating these metrics. The metrics proposed are free of hyperparameters, decomposable, and are asymptotically consistent. We evaluate our solution by studying the convergence rate of the learned graph to the generating network and, also, the structural hamming distance of the learned graph to the generating network. Our evaluations show that the proposed metrics outperform their competitors, the BIC/AIC metrics. Furthermore, using the proposed RNML metric, SBL will have the fastest rate of convergence with the smallest structural hamming distance to the generating network.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.