Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Deep Convolutional Networks through Gestalt Theory

Published 19 Oct 2018 in cs.CV | (1810.08697v1)

Abstract: The superior performance of deep convolutional networks over high-dimensional problems have made them very popular for several applications. Despite their wide adoption, their underlying mechanisms still remain unclear with their improvement procedures still relying mainly on a trial and error process. We introduce a novel sensitivity analysis based on the Gestalt theory for giving insights into the classifier function and intermediate layers. Since Gestalt psychology stipulates that perception can be a product of complex interactions among several elements, we perform an ablation study based on this concept to discover which principles and image context significantly contribute in the network classification. Our results reveal that ConvNets follow most of the visual cortical perceptual mechanisms defined by the Gestalt principles at several levels. The proposed framework stimulates specific feature maps in classification problems and reveal important network attributes that can produce more explainable network models.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.