Papers
Topics
Authors
Recent
Search
2000 character limit reached

A topos view of the type-2 fuzzy truth value algebra

Published 17 Oct 2018 in math.LO | (1810.07565v1)

Abstract: It is known that fuzzy set theory can be viewed as taking place within a topos. There are several equivalent ways to construct this topos, one is as the topos of \'{e}tal\'{e} spaces over the topological space $Y=[0,1)$ with lower topology. In this topos, the fuzzy subsets of a set $X$ are the subobjects of the constant \'{e}tal\'{e} $X\times Y$ where $X$ has the discrete topology. Here we show that the type-2 fuzzy truth value algebra is isomorphic to the complex algebra formed from the subobjects of the constant relational \'{e}tal\'{e} given by the type-1 fuzzy truth value algebra $\mathfrak{I}=([0,1],\wedge,\vee,\neg,0,1)$. More generally, we show that if $L$ is the lattice of open sets of a topological space $Y$ and $\mathfrak{X}$ is a relational structure, then the convolution algebra $L\mathfrak{X}$ is isomorphic to the complex algebra formed from the subobjects of the constant relational \'{e}tal\'{e} given by $\mathfrak{X}$ in the topos of \'{e}tal\'{e} spaces over $Y$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.