Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Evaluating Embedding Models for Knowledge Base Completion (1810.07180v4)

Published 17 Oct 2018 in cs.AI, cs.LG, and stat.ML

Abstract: Knowledge bases contribute to many web search and mining tasks, yet they are often incomplete. To add missing facts to a given knowledge base, various embedding models have been proposed in the recent literature. Perhaps surprisingly, relatively simple models with limited expressiveness often performed remarkably well under today's most commonly used evaluation protocols. In this paper, we explore whether recent models work well for knowledge base completion and argue that the current evaluation protocols are more suited for question answering rather than knowledge base completion. We show that when focusing on a different prediction task for evaluating knowledge base completion, the performance of current embedding models is unsatisfactory even on datasets previously thought to be too easy. This is especially true when embedding models are compared against a simple rule-based baseline. This work indicates the need for more research into the embedding models and evaluation protocols for knowledge base completion.

Citations (45)

Summary

We haven't generated a summary for this paper yet.