2000 character limit reached
Neighborhood Mixture Model for Knowledge Base Completion (1606.06461v3)
Published 21 Jun 2016 in cs.CL and cs.AI
Abstract: Knowledge bases are useful resources for many natural language processing tasks, however, they are far from complete. In this paper, we define a novel entity representation as a mixture of its neighborhood in the knowledge base and apply this technique on TransE-a well-known embedding model for knowledge base completion. Experimental results show that the neighborhood information significantly helps to improve the results of the TransE model, leading to better performance than obtained by other state-of-the-art embedding models on three benchmark datasets for triple classification, entity prediction and relation prediction tasks.
- Dat Quoc Nguyen (55 papers)
- Kairit Sirts (24 papers)
- Lizhen Qu (68 papers)
- Mark Johnson (46 papers)