Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Link Prediction using Embedded Knowledge Graphs (1611.04642v5)

Published 14 Nov 2016 in cs.AI, cs.CL, and cs.LG

Abstract: Since large knowledge bases are typically incomplete, missing facts need to be inferred from observed facts in a task called knowledge base completion. The most successful approaches to this task have typically explored explicit paths through sequences of triples. These approaches have usually resorted to human-designed sampling procedures, since large knowledge graphs produce prohibitively large numbers of possible paths, most of which are uninformative. As an alternative approach, we propose performing a single, short sequence of interactive lookup operations on an embedded knowledge graph which has been trained through end-to-end backpropagation to be an optimized and compressed version of the initial knowledge base. Our proposed model, called Embedded Knowledge Graph Network (EKGN), achieves new state-of-the-art results on popular knowledge base completion benchmarks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.