Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Branching laws for the Steinberg representation: the rank 1 case (1810.06910v1)

Published 16 Oct 2018 in math.RT

Abstract: Let $G/H$ be a reductive symmetric space over a $p$-adic field $F$, the algebraic groups $G$ and $H$ being assumed semisimple of relative rank $1$. One of the branching problems for the Steinberg representation $\St_G$ of $G$ is the determination of the dimension of the intertwining space ${\rm Hom}H (\St_G ,\pi )$, for any irreducible representation $\pi$ of $H$. In this work we do not compute this dimension, but show how it is related to the dimensions of some other intertwining spaces ${\rm Hom}{K_i} ({\tilde \pi} ,1)$, for a certain finite family $K_i$, $i=1,...,r$, of anisotropic subgroups of $H$ (here ${\tilde \pi}$ denote the contragredient representation, and $1$ the trivial character). In other words we show that there is a sort of `reciprocity law' relating two different branching problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.