Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Context-aware Capsule Network for Multi-label Classification (1810.06231v2)

Published 15 Oct 2018 in cs.CV

Abstract: Recently proposed Capsule Network is a brain inspired architecture that brings a new paradigm to deep learning by modelling input domain variations through vector based representations. Despite being a seminal contribution, CapsNet does not explicitly model structured relationships between the detected entities and among the capsule features for related inputs. Motivated by the working of cortical network in human visual system, we seek to resolve CapsNet limitations by proposing several intuitive modifications to the CapsNet architecture. We introduce, (1) a novel routing weight initialization technique, (2) an improved CapsNet design that exploits semantic relationships between the primary capsule activations using a densely connected Conditional Random Field and (3) a Cholesky transformation based correlation module to learn a general priority scheme. Our proposed design allows CapsNet to scale better to more complex problems, such as the multi-label classification task, where semantically related categories co-exist with various interdependencies. We present theoretical bases for our extensions and demonstrate significant improvements on ADE20K scene dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sameera Ramasinghe (36 papers)
  2. C. D. Athuralya (1 paper)
  3. Salman Khan (245 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.