Papers
Topics
Authors
Recent
2000 character limit reached

CPNet: A Context Preserver Convolutional Neural Network for Detecting Shadows in Single RGB Images

Published 13 Oct 2018 in cs.CV | (1810.05778v1)

Abstract: Automatic detection of shadow regions in an image is a difficult task due to the lack of prior information about the illumination source and the dynamic of the scene objects. To address this problem, in this paper, a deep-learning based segmentation method is proposed that identifies shadow regions at the pixel-level in a single RGB image. We exploit a novel Convolutional Neural Network (CNN) architecture to identify and extract shadow features in an end-to-end manner. This network preserves learned contexts during the training and observes the entire image to detect global and local shadow patterns simultaneously. The proposed method is evaluated on two publicly available datasets of SBU and UCF. We have improved the state-of-the-art Balanced Error Rate (BER) on these datasets by 22\% and 14\%, respectively.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.