Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity (1810.05596v1)

Published 12 Oct 2018 in cs.LG and stat.ML

Abstract: Making applications aware of the mobility experienced by the user can open the door to a wide range of novel services in different use-cases, from smart parking to vehicular traffic monitoring. In the literature, there are many different studies demonstrating the theoretical possibility of performing Transportation Mode Detection (TMD) by mining smart-phones embedded sensors data. However, very few of them provide details on the benchmarking process and on how to implement the detection process in practice. In this study, we provide guidelines and fundamental results that can be useful for both researcher and practitioners aiming at implementing a working TMD system. These guidelines consist of three main contributions. First, we detail the construction of a training dataset, gathered by heterogeneous users and including five different transportation modes; the dataset is made available to the research community as reference benchmark. Second, we provide an in-depth analysis of the sensor-relevance for the case of Dual TDM, which is required by most of mobility-aware applications. Third, we investigate the possibility to perform TMD of unknown users/instances not present in the training set and we compare with state-of-the-art Android APIs for activity recognition.

Citations (51)

Summary

We haven't generated a summary for this paper yet.