Papers
Topics
Authors
Recent
2000 character limit reached

Khovanov homology detects the Hopf links

Published 11 Oct 2018 in math.GT | (1810.05040v1)

Abstract: We prove that any link in $S3$ whose Khovanov homology is the same as that of a Hopf link must be isotopic to that Hopf link. This holds for both reduced and unreduced Khovanov homology, and with coefficients in either $\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.