Global $C^{1+α,\frac{1+α}{2}}$ regularity on the linearized parabolic Monge-Amp$\grave{e}$re equation (1810.04487v1)
Abstract: In this paper, we establish global $C{1+\alpha,\frac{1+\alpha}{2}}$ estimates for solutions of the linearized parabolic Monge-Amp$\grave{e}$re equation $$\mathcal{L}_\phi u(x,t):=-u_t\,\mathrm{det}D2\phi(x)+\mathrm{tr}[\Phi(x) D2 u]=f(x,t)$$ under appropriate conditions on the domain, Monge-Amp$\grave{e}$re measures, boundary data and $f$, where $\Phi:=\mathrm{det}(D2\phi)(D2\phi){-1}$ is the cofactor of the Hessian of $D2\phi$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.