Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diffusion with nonlocal Dirichlet boundary conditions on unbounded domains (1810.04474v2)

Published 10 Oct 2018 in math.AP and math.PR

Abstract: We consider a second order differential operator $\mathscr{A}$ on an (typically unbounded) open and Dirichlet regular set $\Omega\subset \mathbb{R}d$ and subject to nonlocal Dirichlet boundary conditions of the form [ u(z) = \int_\Omega u(x)\mu (z, dx) \quad \mbox{ for } z\in \partial \Omega. ] Here, $\mu : \partial\Omega \to \mathscr{M}(\Omega)$ is a $\sigma (\mathscr{M}(\Omega), C_b(\Omega))$-continuous map taking values in the probability measures on $\Omega$. Under suitable assumptions on the coefficients in $\mathscr{A}$, which may be unbounded, we prove that a realization $A_\mu$ of $\mathscr{A}$ subject to the nonlocal boundary condition, generates a (not strongly continuous) semigroup on $L\infty(\Omega)$. We also establish a sufficient condition for this semigroup to be Markovian and prove that in this case, it enjoys the strong Feller property. We also study the asymptotic behavior of the semigroup.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.