Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Residuation in non-associative MV-algebras (1810.02405v1)

Published 4 Oct 2018 in math.LO

Abstract: It is well known that every MV-algebra can be converted into a residuated lattice satisfying divisibility and the double negation law. In our previous papers we introduced the concept of an NMV-algebra which is a non-associative modification of an MV-algebra. The natural question arises if an NMV-algebra can be converted into a residuated structure, too. Contrary to MV-algebras, NMV-algebras are not based on lattices but only on directed posets and the binary operation need not be associative and hence we cannot expect to obtain a residuated lattice but only an essentially weaker structure called a conditionally residuated poset. Considering several additional natural conditions we show that every NMV-algebra can be converted in such a structure. Also conversely, every such structure can be organized into an NMV-algebra. Further, we study a bit more stronger version of an algebra where the binary operation is even monotonous. We show that such an algebra can be organized into a residuated poset and, conversely, every residuated poset can be converted in this structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.