Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Polology of Superconformal Blocks (1810.01264v2)

Published 2 Oct 2018 in hep-th and math.RT

Abstract: We systematically classify all possible poles of superconformal blocks as a function of the scaling dimension of intermediate operators, for all superconformal algebras in dimensions three and higher. This is done by working out the recently-proven irreducibility criterion for parabolic Verma modules for classical basic Lie superalgebras. The result applies to correlators for external operators of arbitrary spin, and indicates presence of infinitely many short multiplets of superconformal algebras, most of which are non-unitary. We find a set of poles whose positions are shifted by linear in $\mathcal{N}$ for $\mathcal{N}$-extended supersymmetry. We find an interesting subtlety for 3d $\mathcal{N}$-extended superconformal algebra with $\mathcal{N}$ odd associated with odd non-isotropic roots. We also comment on further applications to superconformal blocks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.