A flexible sequential Monte Carlo algorithm for parametric constrained regression (1810.01072v3)
Abstract: An algorithm is proposed that enables the imposition of shape constraints on regression curves, without requiring the constraints to be written as closed-form expressions, nor assuming the functional form of the loss function. This algorithm is based on Sequential Monte Carlo-Simulated Annealing and only relies on an indicator function that assesses whether or not the constraints are fulfilled, thus allowing the enforcement of various complex constraints by specifying an appropriate indicator function without altering other parts of the algorithm. The algorithm is illustrated by fitting rational function and B-spline regression models subject to a monotonicity constraint. An implementation of the algorithm using R is freely available on GitHub.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.