Automatic Skin Lesion Segmentation Using GrabCut in HSV Colour Space
Abstract: Skin lesion segmentation is one of the first steps towards automatic Computer-Aided Diagnosis of skin cancer. Vast variety in the appearance of the skin lesion makes this task very challenging. The contribution of this paper is to apply a power foreground extraction technique called GrabCut for automatic skin lesion segmentation with minimal human interaction in HSV color space. Preprocessing was performed for removing the outer black border. Jaccard Index was measured to evaluate the performance of the segmentation method. On average, 0.71 Jaccard Index was achieved on 1000 images from ISIC challenge 2017 Training Dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.