Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Low analytic rank implies low partition rank for tensors (1809.10931v1)

Published 28 Sep 2018 in math.CO and math.NT

Abstract: A tensor defined over a finite field $\mathbb{F}$ has low analytic rank if the distribution of its values differs significantly from the uniform distribution. An order $d$ tensor has partition rank 1 if it can be written as a product of two tensors of order less than $d$, and it has partition rank at most $k$ if it can be written as a sum of $k$ tensors of partition rank 1. In this paper, we prove that if the analytic rank of an order $d$ tensor is at most $r$, then its partition rank is at most $f(r,d,|\mathbb{F}|)$. Previously, this was known with $f$ being an Ackermann-type function in $r$ and $d$ but not depending on $\mathbb{F}$. The novelty of our result is that $f$ has only tower-type dependence on its parameters. It follows from our results that a biased polynomial has low rank; there too we obtain a tower-type dependence improving the previously known Ackermann-type bound.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.