An Empirical Comparison of Syllabuses for Curriculum Learning (1809.10789v2)
Abstract: Syllabuses for curriculum learning have been developed on an ad-hoc, per task basis and little is known about the relative performance of different syllabuses. We identify a number of syllabuses used in the literature. We compare the identified syllabuses based on their effect on the speed of learning and generalization ability of a LSTM network on three sequential learning tasks. We find that the choice of syllabus has limited effect on the generalization ability of a trained network. In terms of speed of learning our results demonstrate that the best syllabus is task dependent but that a recently proposed automated curriculum learning approach - Predictive Gain, performs very competitively against all identified hand-crafted syllabuses. The best performing hand-crafted syllabus which we term Look Back and Forward combines a syllabus which steps through tasks in the order of their difficulty with a uniform distribution over all tasks. Our experimental results provide an empirical basis for the choice of syllabus on a new problem that could benefit from curriculum learning. Additionally, insights derived from our results shed light on how to successfully design new syllabuses.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.