Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Comparison of Syllabuses for Curriculum Learning (1809.10789v2)

Published 27 Sep 2018 in cs.LG and stat.ML

Abstract: Syllabuses for curriculum learning have been developed on an ad-hoc, per task basis and little is known about the relative performance of different syllabuses. We identify a number of syllabuses used in the literature. We compare the identified syllabuses based on their effect on the speed of learning and generalization ability of a LSTM network on three sequential learning tasks. We find that the choice of syllabus has limited effect on the generalization ability of a trained network. In terms of speed of learning our results demonstrate that the best syllabus is task dependent but that a recently proposed automated curriculum learning approach - Predictive Gain, performs very competitively against all identified hand-crafted syllabuses. The best performing hand-crafted syllabus which we term Look Back and Forward combines a syllabus which steps through tasks in the order of their difficulty with a uniform distribution over all tasks. Our experimental results provide an empirical basis for the choice of syllabus on a new problem that could benefit from curriculum learning. Additionally, insights derived from our results shed light on how to successfully design new syllabuses.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.