Multi-variate correlation and mixtures of product measures (1809.10272v4)
Abstract: Total correlation (TC') and dual total correlation (DTC') are two classical ways to quantify the correlation among an $n$-tuple of random variables. They both reduce to mutual information when $n=2$. The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution $\mu$ has small TC or DTC. If $\mathrm{TC}(\mu) = o(n)$, then $\mu$ is close to a product measure according to a suitable transportation metric: this follows directly from Marton's classical transportation-entropy inequality. If $\mathrm{DTC}(\mu) = o(n)$, then the structural consequence is more complicated: $\mu$ is a mixture of a controlled number of terms, most of them close to product measures in the transportation metric. This is the main new result of the paper.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.