Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal Renormalization Group Transformation from Information Theory (1809.09632v2)

Published 25 Sep 2018 in cond-mat.stat-mech and cond-mat.dis-nn

Abstract: Recently a novel real-space RG algorithm was introduced, identifying the relevant degrees of freedom of a system by maximizing an information-theoretic quantity, the real-space mutual information (RSMI), with machine learning methods. Motivated by this, we investigate the information theoretic properties of coarse-graining procedures, for both translationally invariant and disordered systems. We prove that a perfect RSMI coarse-graining does not increase the range of interactions in the renormalized Hamiltonian, and, for disordered systems, suppresses generation of correlations in the renormalized disorder distribution, being in this sense optimal. We empirically verify decay of those measures of complexity, as a function of information retained by the RG, on the examples of arbitrary coarse-grainings of the clean and random Ising chain. The results establish a direct and quantifiable connection between properties of RG viewed as a compression scheme, and those of physical objects i.e. Hamiltonians and disorder distributions. We also study the effect of constraints on the number and type of coarse-grained degrees of freedom on a generic RG procedure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.