Relations de Hodge--Riemann et combinatoire des matroïdes (d'après K. Adiprasito, J. Huh et E. Katz) (1809.09384v2)
Abstract: Finite matroids are combinatorial structures that express the concept of linear independence. In 1964, G.-C. Rota conjectured that the coefficients of the "characteristic polynomial" of a matroid $M$, polynomial whose coefficients enumerate its subsets of given rank, form a log-concave sequence. K. Adiprasito, J. Huh et E. Katz have proved this conjecture using methods which, although entirely combinatorial, are inspired by algebraic geometry. From the Bergman fan of the matroid $M$, they define a graded "Chow ring" $A(M)$ for which they prove analogs of the Poincar\'e duality, the Hard Lefschetz theorem, and the Hodge--Riemann relations. The sought for log-concavity inequalities are then analogous to the Khovanskii--Teissier inequalities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.