Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multigrid Backprojection Super-Resolution and Deep Filter Visualization

Published 25 Sep 2018 in eess.IV, cs.CV, cs.LG, and eess.SP | (1809.09326v3)

Abstract: We introduce a novel deep-learning architecture for image upscaling by large factors (e.g. 4x, 8x) based on examples of pristine high-resolution images. Our target is to reconstruct high-resolution images from their downscale versions. The proposed system performs a multi-level progressive upscaling, starting from small factors (2x) and updating for higher factors (4x and 8x). The system is recursive as it repeats the same procedure at each level. It is also residual since we use the network to update the outputs of a classic upscaler. The network residuals are improved by Iterative Back-Projections (IBP) computed in the features of a convolutional network. To work in multiple levels we extend the standard back-projection algorithm using a recursion analogous to Multi-Grid algorithms commonly used as solvers of large systems of linear equations. We finally show how the network can be interpreted as a standard upsampling-and-filter upscaler with a space-variant filter that adapts to the geometry. This approach allows us to visualize how the network learns to upscale. Finally, our system reaches state of the art quality for models with relatively few number of parameters.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.