Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weyl gauge symmetry and its spontaneous breaking in Standard Model and inflation

Published 24 Sep 2018 in hep-th, gr-qc, and hep-ph | (1809.09174v3)

Abstract: We discuss the local (gauged) Weyl symmetry and its spontaneous breaking and apply it to model building beyond the Standard Model (SM) and inflation. In models with non-minimal couplings of the scalar fields to the Ricci scalar, that are conformal invariant, the spontaneous generation by a scalar field(s) vev of a positive Newton constant demands a negative kinetic term for the scalar field, or vice-versa. This is naturally avoided in models with additional Weyl gauge symmetry. The Weyl gauge field $\omega_\mu$ couples to the scalar sector but not to the fermionic sector of a SM-like Lagrangian. The field $\omega_\mu$ undergoes a Stueckelberg mechanism and becomes massive after "eating" the (radial mode) would-be-Goldstone field (dilaton $\rho$) in the scalar sector. Before the decoupling of $\omega_\mu$, the dilaton can act as UV regulator and maintain the Weyl symmetry at the {\it quantum} level, with relevance for solving the hierarchy problem. After the decoupling of $\omega_\mu$, the scalar potential depends only on the remaining (angular variables) scalar fields, that can be the Higgs field, inflaton, etc. We show that successful inflation is then possible with one of these scalar fields identified as the inflaton. While our approach is derived in the Riemannian geometry with $\omega_\mu$ introduced to avoid ghosts, the natural framework is that of Weyl geometry which for the same matter spectrum is shown to generate the same Lagrangian, up to a total derivative.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.