Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Refinement Approach for Social Media Headline Prediction (1809.08753v1)

Published 24 Sep 2018 in cs.MM

Abstract: In this study, we propose a novel iterative refinement approach to predict the popularity score of the social media meta-data effectively. With the rapid growth of the social media on the Internet, how to adequately forecast the view count or popularity becomes more important. Conventionally, the ensemble approach such as random forest regression achieves high and stable performance on various prediction tasks. However, most of the regression methods may not precisely predict the extreme high or low values. To address this issue, we first predict the initial popularity score and retrieve their residues. In order to correctly compensate those extreme values, we adopt an ensemble regressor to compensate the residues to further improve the prediction performance. Comprehensive experiments are conducted to demonstrate the proposed iterative refinement approach outperforms the state-of-the-art regression approach.

Citations (14)

Summary

We haven't generated a summary for this paper yet.