Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Dispersive shock waves theory for non-integrable equations (1809.08553v2)

Published 23 Sep 2018 in nlin.PS

Abstract: We suggest a method for calculation of parameters of dispersive shock waves in framework of Whitham modulation theory applied to non-integrable wave equations with a wide class of initial conditions corresponding to propagation of a pulse into a medium at rest. The method is based on universal applicability of Whitham's `number of waves conservation law' as well as on the conjecture of applicability of its soliton counterpart to the above mentioned class of initial conditions which is substantiated by comparison with similar situations in the case of completely integrable wave equations. This allows one to calculate the limiting characteristic velocities of the Whitham modulation equations at the boundary with the smooth part of the pulse whose evolution obeys the dispersionless approximation equations. We show that explicit analytic expressions can be obtained for laws of motion of the edges. The validity of the method is confirmed by its application to similar situations described by the integrable Korteweg-de Vries (KdV) and nonlinear Schr\"{o}dinger (NLS) equations and by comparison with the results of numerical simulations for the generalized KdV and NLS equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.