Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarial Defense via Data Dependent Activation Function and Total Variation Minimization

Published 23 Sep 2018 in cs.LG, cs.NA, math.NA, and stat.ML | (1809.08516v3)

Abstract: We improve the robustness of Deep Neural Net (DNN) to adversarial attacks by using an interpolating function as the output activation. This data-dependent activation remarkably improves both the generalization and robustness of DNN. In the CIFAR10 benchmark, we raise the robust accuracy of the adversarially trained ResNet20 from $\sim 46\%$ to $\sim 69\%$ under the state-of-the-art Iterative Fast Gradient Sign Method (IFGSM) based adversarial attack. When we combine this data-dependent activation with total variation minimization on adversarial images and training data augmentation, we achieve an improvement in robust accuracy by 38.9$\%$ for ResNet56 under the strongest IFGSM attack. Furthermore, We provide an intuitive explanation of our defense by analyzing the geometry of the feature space.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.