Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Content-Based Multi-Source Encrypted Image Retrieval in Clouds with Privacy Preservation (1809.08433v1)

Published 22 Sep 2018 in cs.CR

Abstract: Content-based image retrieval (CBIR) is one of the fundamental image retrieval primitives. Its applications can be found in various areas, such as art collections and medical diagnoses. With an increasing prevalence of cloud computing paradigm, image owners desire to outsource their images to cloud servers. In order to deal with the risk of privacy leakage of images, images are typically encrypted before they are outsourced to the cloud, which makes CBIR an extremely challenging task. Existing studies focus on the scenario with only a single image owner, leaving the problem of CBIR with multiple image sources (i.e., owners) unaddressed. In this paper, we propose a secure CBIR scheme that supports Multiple Image owners with Privacy Protection (MIPP). We encrypt image features with a secure multi-party computation technique, which allows image owners to encrypt image features with their own keys. This enables efficient image retrieval over images gathered from multiple sources, while guaranteeing that image privacy of an individual image owner will not be leaked to other image owners. We also propose a new method for similarity measurement of images that can avoid revealing image similarity information to the cloud. Theoretical analysis and experimental results demonstrate that MIPP achieves retrieval accuracy and efficiency simultaneously, while preserving image privacy.

Citations (78)

Summary

We haven't generated a summary for this paper yet.