Bipartite Fluctuations and Topology of Dirac and Weyl Systems
Abstract: Bipartite fluctuations can provide interesting information about entanglement properties and correlations in many-body quantum systems. We address such fluctuations in relation with the topology of Dirac and Weyl quantum systems, in situations where the relevant particle number is not conserved, leading to additional volume laws scaling with the Quantum Fisher information. Through the example of the $p+ip$ superconductor, we build a relation between charge fluctuations and the associated winding numbers of Dirac cones in the low-energy sector. Topological aspects of the Hamiltonian in the vicinity of these points induce long-range entanglement in real space. We provide a detailed analysis of such fluctuation properties, including the role of gap anisotropy, and discuss higher-dimensional Weyl analogues.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.