Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulator Calibration under Covariate Shift with Kernels (1809.08159v4)

Published 21 Sep 2018 in stat.ML and cs.LG

Abstract: We propose a novel calibration method for computer simulators, dealing with the problem of covariate shift. Covariate shift is the situation where input distributions for training and test are different, and ubiquitous in applications of simulations. Our approach is based on Bayesian inference with kernel mean embedding of distributions, and on the use of an importance-weighted reproducing kernel for covariate shift adaptation. We provide a theoretical analysis for the proposed method, including a novel theoretical result for conditional mean embedding, as well as empirical investigations suggesting its effectiveness in practice. The experiments include calibration of a widely used simulator for industrial manufacturing processes, where we also demonstrate how the proposed method may be useful for sensitivity analysis of model parameters.

Citations (10)

Summary

We haven't generated a summary for this paper yet.