Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards the Development of a Rule-based Drought Early Warning Expert Systems using Indigenous Knowledge (1809.08101v1)

Published 19 Sep 2018 in cs.AI, cs.LO, and cs.NE

Abstract: Drought forecasting and prediction is a complicated process due to the complexity and scalability of the environmental parameters involved. Hence, it required a high level of expertise to predict. In this paper, we describe the research and development of a rule-based drought early warning expert systems (RB-DEWES) for forecasting drought using local indigenous knowledge obtained from domain experts. The system generates inference by using rule set and provides drought advisory information with attributed certainty factor (CF) based on the user's input. The system is believed to be the first expert system for drought forecasting to use local indigenous knowledge on drought. The architecture and components such as knowledge base, JESS inference engine and model base of the system and their functions are presented.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com