Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mean Field Game Systems with Common Noise and Markovian Latent Processes (1809.07865v3)

Published 20 Sep 2018 in math.OC and cs.SY

Abstract: In many stochastic games stemming from financial models, the environment evolves with latent factors and there may be common noise across agents' states. Two classic examples are: (i) multi-agent trading on electronic exchanges, and (ii) systemic risk induced through inter-bank lending/borrowing. Moreover, agents' actions often affect the environment, and some agent's may be small while others large. Hence sub-population of agents may act as minor agents, while another class may act as major agents. To capture the essence of such problems, here, we introduce a general class of non-cooperative heterogeneous stochastic games with one major agent and a large population of minor agents where agents interact with an observed common process impacted by the mean field. A latent Markov chain and a latent Wiener process (common noise) modulate the common process, and agents cannot observe them. We use filtering techniques coupled with a convex analysis approach to (i) solve the mean field game limit of the problem, (ii) demonstrate that the best response strategies generate an $\epsilon$-Nash equilibrium for finite populations, and (iii) obtain explicit characterisations of the best response strategies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.