Papers
Topics
Authors
Recent
Search
2000 character limit reached

On constructing orthogonal generalized doubly stochastic matrices

Published 20 Sep 2018 in cs.NA | (1809.07618v1)

Abstract: A real quadratic matrix is generalized doubly stochastic (g.d.s.) if all of its row sums and column sums equal one. We propose numerically stable methods for generating such matrices having possibly orthogonality property or/and satisfying Yang-Baxter equation (YBE). Additionally, an inverse eigenvalue problem for finding orthogonal generalized doubly stochastic matrices with prescribed eigenvalues is solved here. The tests performed in \textsl{MATLAB} illustrate our proposed algorithms and demonstrate their useful numerical properties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.