$L_1$ Shortest Path Queries in Simple Polygons
Abstract: Let $P$ be a simple polygon of $n$ vertices. We consider two-point $L_1$ shortest path queries in $P$. We build a data structure of $O(n)$ size in $O(n)$ time such that given any two query points $s$ and $t$, the length of an $L_1$ shortest path from $s$ to $t$ in $P$ can be computed in $O(\log n)$ time, or in $O(1)$ time if both $s$ and $t$ are vertices of $P$, and an actual shortest path can be output in additional linear time in the number of edges of the path. To achieve the result, we propose a mountain decomposition of simple polygons, which may be interesting in its own right. Most importantly, our approach is much simpler than the previous work on this problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.