Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Superluminous Supernovae in LSST: Rates, Detection Metrics, and Light Curve Modeling (1809.07343v1)

Published 19 Sep 2018 in astro-ph.HE

Abstract: We explore and demonstrate the capabilities of LSST to study Type I superluminous supernovae (SLSNe). We first fit the light curves of 58 known SLSNe at z~0.1-1.6, using an analytical magnetar spin-down model implemented in MOSFiT. We then use the posterior distributions of the magnetar and ejecta parameters to generate thousands of synthetic SLSN light curves, and we inject those into the OpSim to generate realistic ugrizy light curves. We define simple, measurable metrics to quantify the detectability and utility of the light curve, and to measure the efficiency of LSST in returning SLSN light curves satisfying these metrics. We combine the metric efficiencies with the volumetric rate of SLSNe to estimate the overall discovery rate of LSST, and we find that ~104 SLSNe per year with >10 data points will be discovered in the WFD survey at z<3.0, while only ~15 SLSNe per year will be discovered in each DDF at z<4.0. To evaluate the information content in the LSST data, we refit representative output light curves with the same model that was used to generate them. We correlate our ability to recover magnetar and ejecta parameters with the simple light curve metrics to evaluate the most important metrics. We find that we can recover physical parameters to within 30% of their true values from ~18% of WFD light curves. Light curves with measurements of both the rise and decline in gri-bands, and those with at least fifty observations in all bands combined, are most information rich, with ~30% of these light curves having recoverable physical parameters to ~30% accuracy. WFD survey strategies which increase cadence in these bands and minimize seasonal gaps will maximize the number of scientifically useful SLSN light curves. Finally, although the DDFs will provide more densely sampled light curves, we expect only ~50 SLSNe with recoverable parameters in each field in the decade-long survey.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.