Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

Interpretable Reinforcement Learning with Ensemble Methods (1809.06995v1)

Published 19 Sep 2018 in cs.LG and stat.ML

Abstract: We propose to use boosted regression trees as a way to compute human-interpretable solutions to reinforcement learning problems. Boosting combines several regression trees to improve their accuracy without significantly reducing their inherent interpretability. Prior work has focused independently on reinforcement learning and on interpretable machine learning, but there has been little progress in interpretable reinforcement learning. Our experimental results show that boosted regression trees compute solutions that are both interpretable and match the quality of leading reinforcement learning methods.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.