2000 character limit reached
Knot Invariants from Laplacian Matrices
Published 18 Sep 2018 in math.GT | (1809.06492v2)
Abstract: A checkerboard graph of a special diagram of an oriented link is made a directed, edge-weighted graph in a natural way so that a principal minor of its Laplacian matrix is a Seifert matrix of the link. Doubling and weighting the edges of the graph produces a second Laplacian matrix such that a principal minor is an Alexander matrix of the link. The Goeritz matrix and signature invariants are obtained in a similar way. A device introduced by L. Kauffman makes it possible to apply the method to general diagrams.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.