Papers
Topics
Authors
Recent
Search
2000 character limit reached

Crowd-Assisted Polyp Annotation of Virtual Colonoscopy Videos

Published 17 Sep 2018 in cs.CV | (1809.06408v1)

Abstract: Virtual colonoscopy (VC) allows a radiologist to navigate through a 3D colon model reconstructed from a computed tomography scan of the abdomen, looking for polyps, the precursors of colon cancer. Polyps are seen as protrusions on the colon wall and haustral folds, visible in the VC fly-through videos. A complete review of the colon surface requires full navigation from the rectum to the cecum in antegrade and retrograde directions, which is a tedious task that takes an average of 30 minutes. Crowdsourcing is a technique for non-expert users to perform certain tasks, such as image or video annotation. In this work, we use crowdsourcing for the examination of complete VC fly-through videos for polyp annotation by non-experts. The motivation for this is to potentially help the radiologist reach a diagnosis in a shorter period of time, and provide a stronger confirmation of the eventual diagnosis. The crowdsourcing interface includes an interactive tool for the crowd to annotate suspected polyps in the video with an enclosing box. Using our workflow, we achieve an overall polyps-per-patient sensitivity of 87.88% (95.65% for polyps $\geq$5mm and 70% for polyps $<$5mm). We also demonstrate the efficacy and effectiveness of a non-expert user in detecting and annotating polyps and discuss their possibility in aiding radiologists in VC examinations.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.