Papers
Topics
Authors
Recent
2000 character limit reached

General formation control for multi-agent systems with double-integrator dynamics

Published 17 Sep 2018 in math.OC | (1809.06002v1)

Abstract: We study the general formation problem for a group of mobile agents in a plane, in which the agents are required to maintain a distribution pattern, as well as to rotate around or remain static relative to a static/moving target. The prescribed distribution pattern is a class of general formations that the distances between neighboring agents or the distances from each agent to the target do not need to be equal. Each agent is modeled as a double integrator and can merely perceive the relative information of the target and its neighbors. A distributed control law is designed using the limit-cycle based idea to solve the problem. One merit of the controller is that it can be implemented by each agent in its Frenet-Serret frame so that only local information is utilized without knowing global information. Theoretical analysis is provided of the equilibrium of the N-agent system and of the convergence of its converging part. Numerical simulations are given to show the effectiveness and performance of the proposed controller.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.