Papers
Topics
Authors
Recent
Search
2000 character limit reached

Detecting and Explaining Drifts in Yearly Grant Applications

Published 15 Sep 2018 in cs.AI and cs.LG | (1809.05650v2)

Abstract: During the lifetime of a Business Process changes can be made to the workflow, the required resources, required documents, . . . . Different traces from the same Business Process within a single log file can thus differ substantially due to these changes. We propose a method that is able to detect concept drift in multivariate log files with a dozen attributes. We test our approach on the BPI Challenge 2018 data con- sisting of applications for EU direct payment from farmers in Germany where we use it to detect Concept Drift. In contrast to other methods our algorithm does not require the manual selection of the features used to detect drift. Our method first creates a model that captures the re- lations between attributes and between events of different time steps. This model is then used to score every event and trace. These scores can be used to detect outlying cases and concept drift. Thanks to the decomposability of the score we are able to perform detailed root-cause analysis.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.