Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

BCOV invariants of Calabi--Yau manifolds and degenerations of Hodge structures (1809.05452v2)

Published 14 Sep 2018 in math.AG and math.DG

Abstract: Calabi--Yau manifolds have risen to prominence in algebraic geometry, in part because of mirror symmetry and enumerative geometry. After Bershadsky--Cecotti--Ooguri--Vafa (BCOV), it is expected that genus 1 curve counting on a Calabi--Yau manifold is related to a conjectured invariant, only depending on the complex structure of the mirror, and built from Ray--Singer holomorphic analytic torsions. To this end, extending work of Fang--Lu--Yoshikawa in dimension 3, we introduce and study the BCOV invariant of Calabi--Yau manifolds of arbitrary dimension. To determine it, knowledge of its behaviour at the boundary of moduli spaces is imperative. We address this problem by proving precise asymptotics along one-parameter degenerations, in terms of topological data and intersection theory. Central to the approach are new results on degenerations of $L2$ metrics on Hodge bundles, combined with information on the singularities of Quillen metrics in our previous work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.