Papers
Topics
Authors
Recent
Search
2000 character limit reached

Marginal Structural Models for Time-varying Endogenous Treatments: A Time-Varying Instrumental Variable Approach

Published 14 Sep 2018 in stat.ME | (1809.05422v1)

Abstract: Robins (1998) introduced marginal structural models (MSMs), a general class of counterfactual models for the joint effects of time-varying treatment regimes in complex longitudinal studies subject to time-varying confounding. He established identification of MSM parameters under a sequential randomization assumption (SRA), which essentially rules out unmeasured confounding of treatment assignment over time. In this technical report, we consider sufficient conditions for identification of MSM parameters with the aid of a time-varying instrumental variable, when sequential randomization fails to hold due to unmeasured confounding. Our identification conditions essentially require that no unobserved confounder predicts compliance type for the time-varying treatment, the longitudinal generalization of the identifying condition of Wang and Tchetgen Tchetgen (2018). Under this assumption, We derive a large class of semiparametric estimators that extends standard inverse-probability weighting (IPW), the most popular approach for estimating MSMs under SRA, by incorporating the time-varying IV through a modified set of weights. The set of influence functions for MSM parameters is derived under a semiparametric model with sole restriction on observed data distribution given by the MSM, and is shown to provide a rich class of multiply robust estimators, including a local semiparametric efficient estimator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.