Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAFE: A Neural Survival Analysis Model for Fraud Early Detection (1809.04683v2)

Published 12 Sep 2018 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: Many online platforms have deployed anti-fraud systems to detect and prevent fraudulent activities. However, there is usually a gap between the time that a user commits a fraudulent action and the time that the user is suspended by the platform. How to detect fraudsters in time is a challenging problem. Most of the existing approaches adopt classifiers to predict fraudsters given their activity sequences along time. The main drawback of classification models is that the prediction results between consecutive timestamps are often inconsistent. In this paper, we propose a survival analysis based fraud early detection model, SAFE, which maps dynamic user activities to survival probabilities that are guaranteed to be monotonically decreasing along time. SAFE adopts recurrent neural network (RNN) to handle user activity sequences and directly outputs hazard values at each timestamp, and then, survival probability derived from hazard values is deployed to achieve consistent predictions. Because we only observe the user suspended time instead of the fraudulent activity time in the training data, we revise the loss function of the regular survival model to achieve fraud early detection. Experimental results on two real world datasets demonstrate that SAFE outperforms both the survival analysis model and recurrent neural network model alone as well as state-of-the-art fraud early detection approaches.

Citations (39)

Summary

We haven't generated a summary for this paper yet.