Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FRAUDability: Estimating Users' Susceptibility to Financial Fraud Using Adversarial Machine Learning (2312.01200v1)

Published 2 Dec 2023 in cs.CR

Abstract: In recent years, financial fraud detection systems have become very efficient at detecting fraud, which is a major threat faced by e-commerce platforms. Such systems often include machine learning-based algorithms aimed at detecting and reporting fraudulent activity. In this paper, we examine the application of adversarial learning based ranking techniques in the fraud detection domain and propose FRAUDability, a method for the estimation of a financial fraud detection system's performance for every user. We are motivated by the assumption that "not all users are created equal" -- while some users are well protected by fraud detection algorithms, others tend to pose a challenge to such systems. The proposed method produces scores, namely "fraudability scores," which are numerical estimations of a fraud detection system's ability to detect financial fraud for a specific user, given his/her unique activity in the financial system. Our fraudability scores enable those tasked with defending users in a financial platform to focus their attention and resources on users with high fraudability scores to better protect them. We validate our method using a real e-commerce platform's dataset and demonstrate the application of fraudability scores from the attacker's perspective, on the platform, and more specifically, on the fraud detection systems used by the e-commerce enterprise. We show that the scores can also help attackers increase their financial profit by 54%, by engaging solely with users with high fraudability scores, avoiding those users whose spending habits enable more accurate fraud detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. C. Mercer, “Fraud detection via regression analysis,” Computers & Security, vol. 9, no. 4, pp. 331–338, 1990.
  2. D. Malekian and M. R. Hashemi, “An adaptive profile based fraud detection framework for handling concept drift,” in 10th International ISC Conference on Information Security and Cryptology, ISCISC 2013, Yazd, Iran, August 29-30, 2013.   IEEE, 2013, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ISCISC.2013.6767338
  3. J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton, and O. Caelen, “Sequence classification for credit-card fraud detection,” Expert Systems with Applications, vol. 100, pp. 234–245, 2018.
  4. M. Carminati, L. Santini, M. Polino, and S. Zanero, “Evasion attacks against banking fraud detection systems,” in 23rd International Symposium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14-15, 2020, M. Egele and L. Bilge, Eds.   USENIX Association, 2020, pp. 285–300. [Online]. Available: https://www.usenix.org/conference/raid2020/presentation/carminati
  5. Q. Guo, Z. Li, B. An, P. Hui, J. Huang, L. Zhang, and M. Zhao, “Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach,” in The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, L. Liu, R. W. White, A. Mantrach, F. Silvestri, J. J. McAuley, R. Baeza-Yates, and L. Zia, Eds.   ACM, 2019, pp. 616–626. [Online]. Available: https://doi.org/10.1145/3308558.3313533
  6. A. Continella, M. Carminati, M. Polino, A. Lanzi, S. Zanero, and F. Maggi, “Prometheus: Analyzing webinject-based information stealers,” Journal of Computer Security, vol. 25, no. 2, pp. 117–137, 2017.
  7. D. Robertson, “The nilson report,” in The Nilson Report, issue 1164.   Santa Barbara, CA 93150, USA: The Nilson Report, 2019, pp. 24–29.
  8. Y. Qi and J. Xiao, “Fintech: Ai powers financial services to improve people’s lives,” Communications of the ACM, vol. 61, no. 11, pp. 65–69, 2018.
  9. A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” Journal of Network and Computer Applications, vol. 68, pp. 90–113, 2016.
  10. M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, “Systematic poisoning attacks on and defenses for machine learning in healthcare,” IEEE journal of biomedical and health informatics, vol. 19, no. 6, pp. 1893–1905, 2014.
  11. K. Randhawa, C. K. Loo, M. Seera, C. P. Lim, and A. K. Nandi, “Credit card fraud detection using adaboost and majority voting,” IEEE access, vol. 6, pp. 14 277–14 284, 2018.
  12. S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data mining for credit card fraud: A comparative study,” Decision Support Systems, vol. 50, no. 3, pp. 602–613, 2011.
  13. C. Liu, Q. Zhong, X. Ao, L. Sun, W. Lin, J. Feng, Q. He, and J. Tang, “Fraud transactions detection via behavior tree with local intention calibration,” in KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, R. Gupta, Y. Liu, J. Tang, and B. A. Prakash, Eds.   ACM, 2020, pp. 3035–3043. [Online]. Available: https://doi.org/10.1145/3394486.3403354
  14. N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural networks,” in 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.   IEEE Computer Society, 2017, pp. 39–57. [Online]. Available: https://doi.org/10.1109/SP.2017.49
  15. K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel, “Adversarial perturbations against deep neural networks for malware classification,” CoRR, vol. abs/1606.04435, 2016. [Online]. Available: http://arxiv.org/abs/1606.04435
  16. N. Carlini and D. A. Wagner, “Audio adversarial examples: Targeted attacks on speech-to-text,” CoRR, vol. abs/1801.01944, 2018. [Online]. Available: http://arxiv.org/abs/1801.01944
  17. B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini, C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to subvert your spam filter.” LEET, vol. 8, pp. 1–9, 2008.
  18. A. Boloor, X. He, C. D. Gill, Y. Vorobeychik, and X. Zhang, “Simple physical adversarial examples against end-to-end autonomous driving models,” CoRR, vol. abs/1903.05157, 2019. [Online]. Available: http://arxiv.org/abs/1903.05157
  19. X. Huang, Q. Song, F. Yang, and X. Hu, “Large-scale heterogeneous feature embedding,” in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.   AAAI Press, 2019, pp. 3878–3885. [Online]. Available: https://doi.org/10.1609/aaai.v33i01.33013878
  20. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6572
  21. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.   OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?id=HJGU3Rodl
  22. B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial machine learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’18.   New York, NY, USA: Association for Computing Machinery, 2018, p. 2154–2156. [Online]. Available: https://doi.org/10.1145/3243734.3264418
  23. J. H. Wilson, “An analytical approach to detecting insurance fraud using logistic regression,” Journal of Finance and accountancy, vol. 1, p. 1, 2009.
  24. Y. Sahin and E. Duman, “Detecting credit card fraud by ann and logistic regression,” in 2011 International Symposium on Innovations in Intelligent Systems and Applications.   IEEE, 2011, pp. 315–319.
  25. A. Liaw, M. Wiener et al., “Classification and regression by randomforest.”
  26. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, Eds.   ACM, 2016, pp. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chen Doytshman (1 paper)
  2. Satoru Momiyama (6 papers)
  3. Inderjeet Singh (11 papers)
  4. Yuval Elovici (163 papers)
  5. Asaf Shabtai (119 papers)

Summary

We haven't generated a summary for this paper yet.