Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spade: A Real-Time Fraud Detection Framework on Evolving Graphs (Complete Version) (2211.06977v1)

Published 13 Nov 2022 in cs.DB

Abstract: Real-time fraud detection is a challenge for most financial and electronic commercial platforms. To identify fraudulent communities, Grab, one of the largest technology companies in Southeast Asia, forms a graph from a set of transactions and detects dense subgraphs arising from abnormally large numbers of connections among fraudsters. Existing dense subgraph detection approaches focus on static graphs without considering the fact that transaction graphs are highly dynamic. Moreover, detecting dense subgraphs from scratch with graph updates is time consuming and cannot meet the real-time requirement in industry. To address this problem, we introduce an incremental real-time fraud detection framework called Spade. Spade can detect fraudulent communities in hundreds of microseconds on million-scale graphs by incrementally maintaining dense subgraphs. Furthermore, Spade supports batch updates and edge grouping to reduce response latency. Lastly, Spade provides simple but expressive APIs for the design of evolving fraud detection semantics. Developers plug their customized suspiciousness functions into Spade which incrementalizes their semantics without recasting their algorithms. Extensive experiments show that Spade detects fraudulent communities in real time on million-scale graphs. Peeling algorithms incrementalized by Spade are up to a million times faster than the static version.

Citations (14)

Summary

We haven't generated a summary for this paper yet.