Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximally Consistent Sampling and the Jaccard Index of Probability Distributions (1809.04052v2)

Published 11 Sep 2018 in cs.DS and cs.IR

Abstract: We introduce simple, efficient algorithms for computing a MinHash of a probability distribution, suitable for both sparse and dense data, with equivalent running times to the state of the art for both cases. The collision probability of these algorithms is a new measure of the similarity of positive vectors which we investigate in detail. We describe the sense in which this collision probability is optimal for any Locality Sensitive Hash based on sampling. We argue that this similarity measure is more useful for probability distributions than the similarity pursued by other algorithms for weighted MinHash, and is the natural generalization of the Jaccard index.

Citations (26)

Summary

We haven't generated a summary for this paper yet.