Papers
Topics
Authors
Recent
2000 character limit reached

Maximally Consistent Sampling and the Jaccard Index of Probability Distributions

Published 11 Sep 2018 in cs.DS and cs.IR | (1809.04052v2)

Abstract: We introduce simple, efficient algorithms for computing a MinHash of a probability distribution, suitable for both sparse and dense data, with equivalent running times to the state of the art for both cases. The collision probability of these algorithms is a new measure of the similarity of positive vectors which we investigate in detail. We describe the sense in which this collision probability is optimal for any Locality Sensitive Hash based on sampling. We argue that this similarity measure is more useful for probability distributions than the similarity pursued by other algorithms for weighted MinHash, and is the natural generalization of the Jaccard index.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 5 likes about this paper.