Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Revisiting Inaccuracies of Time Series Averaging under Dynamic Time Warping (1809.03371v1)

Published 7 Sep 2018 in stat.ML, cs.AI, and cs.LG

Abstract: This article revisits an analysis on inaccuracies of time series averaging under dynamic time warping conducted by \cite{Niennattrakul2007}. The authors presented a correctness-criterion and introduced drift-outs of averages from clusters. They claimed that averages are inaccurate if they are incorrect or drift-outs. Furthermore, they conjectured that such inaccuracies are caused by the lack of triangle inequality. We show that a rectified version of the correctness-criterion is unsatisfiable and that the concept of drift-out is geometrically and operationally inconclusive. Satisfying the triangle inequality is insufficient to achieve correctness and unnecessary to overcome the drift-out phenomenon. We place the concept of drift-out on a principled basis and show that sample means as global minimizers of a Fr\'echet function never drift out. The adjusted drift-out is a way to test to which extent an approximation is coherent. Empirical results show that solutions obtained by the state-of-the-art methods SSG and DBA are incoherent approximations of a sample mean in over a third of all trials.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.